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Abstract
We propose a controlled Josephson spin current across the junction of two non-
centrosymmetric superconductors like CePt3Si. The Josephson spin current
arises due to the direction-dependent tunnelling matrix element and different
momentum-dependent phases of the triplet components of the gap function.
Its modulation with the angle ξ between the non-centrosymmetric axes of two
superconductors is proportional to sin ξ . This particular dependence on ξ may
find application of the proposed set-up in making a Josephson spin switch.

Traditionally, Josephson junctions [1, 2] in superconductors draw interest both scientifically
and in their applicability in making devices. With no exception, they have also been studied
in unconventional superconductors like spin-singlet cuprate [3] and spin-triplet Sr2RuO4 [4]
superconductors. However, no Josephson junction between nonmagnetic superconductors is
known to generate spin-polarized current. The purpose of this letter is to theoretically show
that the direction-dependent tunnelling matrix element across the junction between two recently
discovered [5] non-centrosymmetric superconductors like CePt3Si leads to tunnelling of both
spin-singlet and spin-triplet Cooper pairs. As a consequence, a non-vanishing spin-Josephson
current is viable along with the usual charge-Josephson current. This novel spin-Josephson
current depends on the relative angle ξ between the axes of non-centrosymmetry n̂L and n̂R in
the left and right side of the junction respectively. This angular dependence may be used to
make a Josephson spin switch.

The normal state Hamiltonian [6, 7] for the electrons in a band of a lattice without inversion
symmetry is

H0 =
∑

k,s

ξkc†
kscks +

∑

k,s,s ′
gk · σ ss ′c†

kscks ′ , (1)

where electrons with momentum k and spin s (= ↑ or ↓) are created (annihilated) by the
operators c†

ks (cks ), and ξk is the band energy measured from the Fermi energy εF. The
second term in the Hamiltonian (1) breaks parity symmetry as g−k = −gk for a non-
centrosymmetric system. For a system like the heavy fermion compound CePt3Si which has
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a layered structure, H0 is considered to be two-dimensional. For such a system of electrons
with band mass m, ξk = k2

2m − εF and gk = αηk, where ηk = n̂ × k, i.e., the spin–
orbit interaction is of Rashba type [8] and α is the Rashba parameter. Here n̂ represents
the axis of non-centrosymmetry which is perpendicular to the plane of the system. Due to
the breaking down of the parity, spin degeneracy of the band is lifted; by diagonalizing H0,
one finds two spin-split bands with energies ξkλ = ξk + λα|k|, where λ = ± describes
the helicity of the spin-split bands. Therefore in the diagonalized basis H0 (1) becomes
H0 = ∑

k,λ=± ξkλc̃
†
kλc̃kλ, where c̃kλ = (ck↑ − iλ exp(iφk)ck↓)/

√
2 is the electron destruction

operator and c̃†
kλ = (c†

k↑+iλ exp(−iφk)c
†
k↓)/

√
2 is the electron creation operator in band λwith

momentum k whose orientation with x̂-axis is φk. The density of electronic states at the Fermi

energy in these bands may be found as νλ = m
2π (1 − λmα/

√
k2

F + m2α2), where kF = √
2mεF

is the Fermi momentum.
Band structure calculation [9] on CePt3Si reveals that the energy difference between the

two spin-split bands near kF is 50–200 meV, which is much larger than the superconducting
critical temperature, kBTc ≈ 0.06 meV [5]. The formation of Cooper pairing between electrons
in different spin-split bands may thus be ignored. The Hamiltonian for these superconductors
may then be written as

H1 =
∑

k,λ=±

[
ξkλc̃

†
kλc̃kλ +

(
	kλc̃

†
kλc̃

†
−kλ + h.c.

)]
, (2)

where Cooper pairs are only between intraband electrons. Therefore the normal and anomalous
Green’s functions are obtained respectively as Gλ(k, iεn) = −(iεn + ξkλ)/(ε

2
n + ξ 2

kλ + |	kλ|2)
and Fλ(k, iεn) = 	kλ/(ε

2
n +ξ 2

kλ+|	kλ|2), where εn is the fermionic Matsubara frequency [13].
The superconducting order parameter 	kλ obeys the symmetry [9, 10]: 	−kλ = −	kλ.
We consider 	kλ = 	̃kλ
k, i.e., the angular dependences of k on the order parameters
of the two bands are assumed to be same. Apart from the overall phase rigidity angle �
of the superconductor, there may be a relative phase difference θ between the two bands:
	̃k+ = |	̃k+|ei� and 	̃k− = |	̃k−|ei(�+θ). Reverting H1 (2) to a spin-up (-down) basis,
we find

H1 =
∑

k


†
k

⎛

⎜⎝

ξk 	k,↑↑ �k,R 	k,↑↓
	∗

k,↑↑ −ξk 	∗
k,↓↑ �∗

k,R
�∗

k,R 	k,↓↑ ξk 	k,↓↓
	∗

k,↑↓ �k,R 	∗
k,↓↓ −ξk

⎞

⎟⎠k, (3)

where 	k,↑↑ = 1
2 (	̃k+ + 	̃k−)
k, 	k,↓↓ = 1

2 exp[2iφk](	̃k+ + 	̃k−)
k, and 	k,↑↓ =
−	k,↓↑ = i

2 exp[iφk](	̃k+ − 	̃k−)
k are the different components of pairing potential
	k,ss ′ between electrons with spins s and s ′, and �k,R = iα|k| exp[−iφk] is the Rashba
spin–orbit coupling potential. The Hamiltonian (3) has been expressed in the basis such
that †

k = (c†
k↑, c−k↑, c†

k↓, c−k↓). Since 	k,↑↓ = −	k,↓↑, there is no triplet component
with zero projection along the spin-quantization direction; pairing between electrons with
unequal spins entirely gives rise to the singlet component. If we choose 
k = −i exp[−iφk],
the triplet component of the pairing may be expressed as 	̂k,T = (dk · σ )iσy with dk =

1
2|k| (	̃k+ + 	̃k−)ηk. In other words, the only stable [7] spin triplet component whose dk ‖ ηk
corresponds to this 
k. Therefore 	k,↑↑ and 	k,↓↓ will have equal but opposite momentum-
dependent phase. Accordingly the singlet component of the pairing potential becomes 	k,S =
1
2 (	̃k+ − 	̃k−). If |	̃k+| 	= |	̃k−|, the admixture [6, 7] of singlet and triplet pairing takes
place. Recent observation [11] of Josephson current in the junction of CePt3Si and an s-wave
superconductor suggests the existence of a spin-singlet order parameter, while larger [5] upper
critical field Hc2 seems to suggest that spin-triplet pairing occurs. One normally assumes the
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Figure 1. Schematic picture of two non-centrosymmetric superconductors, denoted by L and R,
coupled at x = x0. Their orientations are characterized by the axes of non-centrosymmetry, n̂L and
n̂R.

(This figure is in colour only in the electronic version)

superconducting order parameter to be independent of the magnitude of momentum, i.e., 	̃kλ

is k-independent. The anomalous Green’s function Fss ′(k, iεn) in the up–down basis is related
to Fλ as F↑↑ = 1

2 (F+ +F−), F↓↓ = 1
2 e2iφk(F+ +F−), and F↑↓ = −F↓↑ = i

2 eiφk(F+ −F−).
Apart from the applicable momentum-dependent phases, the triplet (singlet) component of Fss ′

is the addition (subtraction) of the anomalous Green’s function of the two spin-split bands.
We now consider Josephson tunnelling between two such non-centrosymmetric

superconductors as depicted in figure 1. The Hamiltonian for the system then reads H =
HL + HR + HT, where HL and HR are the bulk Hamiltonian of the left and right side
of the junction respectively and HT describes the tunnelling between these two sides. The
Hamiltonian HL is described by H1 (2) and HR is also defined equivalently with the change
in the notation of momentum k → p to distinguish each side of the junction. Further,
each parameter in the left (right) is denoted by superscript or subscript L (R). The tunnelling
Hamiltonian reads HT = ∑

kp,s(Tkpc†
kscps + T ∗

kpc†
pscks), where Tkp is the tunnelling matrix

element for an electron with momentum p to tunnel from the right side to the left side with
momentum k. Time-reversal symmetry of HT suggests T−k,−p = T ∗

kp.
In a charge-tunnelling process, the number of electrons in either side of the junction

changes with time, e.g., the rate of change in the number of electrons of the right side of
the junction NR = ∑

p,s c†
pscps reads as ṄR = i[HT, NR]. Therefore the tunnelling charge

current becomes Ic(t) = −e〈ṄR(t)〉: one part corresponds to quasi-particle tunnelling and
the other part is due to the process of Josephson tunnelling [12, 13], i.e., tunnelling of
the Cooper pairs. We are herewith interested in the Josephson charge current defined as
I c
J (t) = 2e Im[exp(−2ieV t)�c

ret(eV )] at time t and for an applied bias voltage V across

the junction, where �c(iωm) = − ∫ β
0 dτ eiωmτ 〈Tτ A(τ )A(0)〉 with imaginary time τ , A(τ ) =∑

kps Tkpc†
ks(τ )cps(τ

′), the bosonic Matsubara frequency [13] ωm , and inverse temperature β .
Instead of the axes of non-centrosymmetry of the two sides of the junction being parallel,
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general axes n̂L and n̂R will lead to η̂k = n̂L × k̂ and η̂p = n̂R × p̂. In that case, Josephson
tunnelling occurs in both the singlet and triplet channels. Separating these channels, we find

�c(iωm) = −
∑

iεn ,kp

|Tkp|2
2β

[
χS + (η̂k · η̂p)χT

]
, (4)

where

χS =
∑

λ,λ′
λλ′
k


∗
pF†

λ (k, iεn)Fλ′(p, iεn − iωm) (5)

and

χT =
∑

λ,λ′

k


∗
pF†

λ(k, iεn)Fλ′(p, iεn − iωm) (6)

represent singlet and triplet contributions respectively. While the direction-independent
electronic tunnelling probability |Tkp|2 = |T |2 leads to tunnelling of the singlet component
only, the triplet components of Cooper pairs tunnel due to the realistic direction-dependent [14]
|Tkp|2. This triplet part in the charge Josephson tunnelling process may effectively provide
spin-Josephson tunnelling. The rate of change of spin Sz = ∑

p[c†
p↑cp↑ − c†

p↓cp↓] due

to tunnelling, i.e., Ṡz = i[HT, Sz ], gives rise to the spin-Josephson tunnelling current
I s
J (t) = −2 Im[exp(−2ieV t)�s

ret(eV )], where �s(iωm) = − ∫ β
0 dτ eiωmτ 〈Tτ B(τ )A(0)〉 with

B(τ ) = ∑
kp Tkp [c†

k↑(τ )cp↑(τ )− c†
k↓(τ )cp↓(τ )]. We thus find

�s(iωm) = i
∑

iεn ,kp

|Tkp|2
2β

∑

j

(η̂k × η̂p) jχT, (7)

where (η̂k × η̂p) j represents the j th spatial component of η̂k × η̂p.
We assume that the non-centrosymmetric axes are parallel to the interface of the junction

as shown in figure 1. The probability of tunnelling [14] will be greatest along the direction
transverse to the interface. In terms of normal state electronic tunnelling conductance GN =
IN/V with IN being normal state tunnelling current, we find the dc (V = 0) charge and spin
Josephson currents:

I c
J =

(
GN

eF

)[
sinψ(g+A1 + g−A2)+ cosψ(g+A3 + g−A4)

]
(8)

I s
J =

(
GN

e2F

)
δκ sin ξ [cosψ (A1 + A2)− sinψ (A3 + A4)] , (9)

where ψ = �L − �R, g± = δ cos ξ ± 1, δ ∈ (0, 1) is a parameter depending on the model1

of the tunnelling matrix element, i.e., the angular dependence of Tkp, cos ξ = n̂L · n̂R, where
both n̂L and n̂R are in the plane of the interface, and κ is the projection of n̂L × n̂R along the
direction perpendicular to the interface. Further, F = π

∑
λλ′ νL

λ ν
R
λ′(1 + δλλ′ cos ξ) describes

the dependence of normal state tunnelling current on δ, A1 = �++ + �−− cos(θL − θR),
A2 = �−+ cos θL + �+− cos θR, A3 = �−− sin(θL − θR), and A4 = �−+ sin θL − �+− sin θR

with

�λλ′ = πνL
λ ν

R
λ′

|	̃L
λ ||	̃R

λ′ |
|	̃L

λ| + |	̃R
λ′ | K

(
|	̃L

λ | − |	̃R
λ′ |

|	̃L
λ | + |	̃R

λ′ |

)
(10)

at zero temperature, where K is an elliptic function of the first kind.

1 For example, δ ≈ 0.4 for |Tkp|2 ∼ |T |2 k̂⊥ p̂⊥�(k̂⊥ p̂⊥) as suggested in [15], where � represents the Heaviside
function and subscript ⊥ represents the direction of momentum along the direction transverse to the junction.
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The charge (8) and spin (9) dc Josephson currents depend on both the sine and cosine of the
global phase difference ψ between the two superconductors. Instead of a continuous relative
phase difference between the superconductors in each spin-split band, there is a possibility
of phase locking such that θL, θR = nπ (n ∈ Z). In this case, A3 = A4 = 0 and hence
I c
J (V = 0) ∝ sinψ and I s

J (V = 0) ∝ cosψ . This situation is also true for θL = θR, even in the
absence of their locking at nπ . The critical charge- and spin-Josephson currents are modulated
with the angle ξ .

For general values of θL and θR, the charge (8) and spin (9) Josephson currents may be
parameterized as I c

J = J c
1 sin(ψ + χ1) + J c

2 sin(ψ + χ2) and I s
J = J s cos(ψ + χ1), where

J c
1 (eF/GN) = Cδ cos ξ , J c

2 (eF/GN) = D, J s(e2F/GN) = Cδκ sin ξ , χ1 = tan−1(A3+A4
A1+A2

)

and χ2 = tan−1(A3−A4
A1−A2

)with C = [(A1+A2)
2 +(A3 +A4)

2]1/2, and D = [(A1 −A2)
2 +(A3 −

A4)
2]1/2. With the application of external flux, the current and phase relationship [2, 3] for I c

J
may be found out. This will determine J c

1 and J c
2 and thereby δ and ξ . These determinations

will predict the value of I s
J . The spin current may be tested if the proposed set-up acts as a

source of spin current.
The spin-Josephson current (9) is proportional to sin ξ , which means that I s

J is maximum
when the orientation of the axes of non-centrosymmetry between the left and right side of
the superconductors is transverse, and it vanishes when the axes are parallel. This particular
property should be useful to control the spin-Josephson current by orienting the axes about
which the inversion symmetries are lost. Therefore it will be useful to build a Josephson spin
switch.

To summarize, we have shown that the Josephson tunnelling process between two
superconductors without inversion symmetry consists of tunnelling of both spin-singlet and
spin-triplet Cooper pairs. Because the direction-dependent tunnelling matrix element in a real
junction and the momentum-dependent phases of the triplet components of the gap function,
namely 	k,↑↑ and 	k,↓↓, are opposite, there is a net spin-Josephson current. This spin current
is proportional to sine of the angle ξ between the axes of non-centrosymmetry in the bulk
superconductors in each side of the junction. This may be used to make a Josephson spin
switch with the controlling parameter ξ .

SPM thanks CSIR, Government of India, for his research fellowship.
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